انطباق انگیزه های تقلّب در مدیران با الگوی نظریه چشم انداز تجمعی از طریق تجزیه و تحلیل متن

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری حسابداری دانشکده علوم اداری و اقتصاد دانشگاه اصفهان، اصفهان، ایران

2 دانشیار گروه حسابداری دانشکده علوم اداری و اقتصاد دانشگاه اصفهان، اصفهان، ایران

3 استادیار گروه اقتصاد دانشکده علوم اداری و اقتصاد دانشگاه اصفهان، اصفهان، ایران

چکیده

گزارشگری متقلّبانه، به معنای اقدام عمدی در جهت تهیه گزارش‌های نادرست و گمراه‌کننده است. بند 7 استاندارد حسابداری شماره 1 ایران هیئت مدیره را مسئول تهیه صورت‌های مالی دانسته است و مدیران نیز می‌توانند با انگیزه‌های متقلّبانه اقدام به تهیه گزارش‌های شرکت، از جمله گزارش هیئت‌مدیره به مجمع نمایند. یکی از نظریه‌هایی که به توضیح شیوه‌ی تصمیم‌گیری مدیران بر اساس ویژگی‌های شخصیتی آنها (ریسک‌پذیری و ریسک‌گریزی) پرداخته است، نظریه چشم‌انداز تجمعی (CPT) است. بر اساس این نظریه مدیران، عملکردی را بعنوان نقطه‌ی مرجع در ذهن خود ایجاد کرده و چنانچه احساس کنند که عملکردشان از نقطه‌ی مرجع فاصله خواهد گرفت، انگیزه‌های تقلّب در ذهن آنها شکل می‌گیرد. در این پژوهش ابتدا با تمرکز بر تجزیه و تحلیل متن گزارش‌های هیئت‌مدیره به مجمع و با استفاده از دو روش داده‌کاوی شامل یک روش مبتنی بر درخت تصمیم و یک روش مبتنی بر آموزش ماشین، شاخصی برای ارزیابی و تشخیص خطر تقلّب در گزارش‌های هیئت مدیره تعیین شده است که دقتی بیش از 90% دارد. سپس با استفاده از شاخص مذکور، بررسی شده است که آیا انگیزه‌های مدیران برای استفاده از روش هایی با خطر بالای تقلّب در تهیه گزارش‌ها، از الگویی که توسط نظریه چشم‌انداز تجمعی ارائه شده است پیروی می‌کند یا خیر؟ نتایج نشان‌دهنده‌ی عدم انطباق انگیزه‌های تقلّب مدیران در ایران، با نظریه مذکور است.

کلیدواژه‌ها


عنوان مقاله [English]

The Conformity of Fraud Incentives in Managers with Cumulative Prospect Theory Pattern through Text Analysis

نویسندگان [English]

  • Alireza Rahrovi Dastjerdi 1
  • daruosh foroghi 2
  • Gholamhosein Kiani 3
1 Phd. student of Accounting, Esfahan University, Esfahan, Iran
2 Associate professor of Accounting, Esfahan University, Esfahan, Iran
3 Assistant professor of Economic, Esfahan University, Esfahan, Iran
چکیده [English]

Fraudulent reporting means intentional providence of false and misleading reports. Paragraph 7 of Iranian Accounting Standard No. 1 considers the board of directors as responsible for financial statements providence, however, managers may provide the firm's reports including the report of the board of directors, with fraudulent incentives. One of the theories explaining the managerial decision-making methods based on their personality traits (risk taking and risk aversion) is the Cumulative Prospect Theory (CPT). Based on this theory, fraud incentives will be formed in managers' mind when they feel their performance will go away from the reference point they have already created in their minds. This study determines an index with more than 90% accuracy for assessing and detecting the risk of fraud in the board's report, focusing the report text and using two data mining methods including decision tree and machine learning methods. Then, the index is used to examine whether the manager incentives for using high fraud risk reporting methods follow the pattern presented in cumulative prospect theory. The results indicate that managers' fraud incentives in Iran are not consistent with CPT.

کلیدواژه‌ها [English]

  • Cumulative Prospect Theory
  • Fraud Risk
  • Data Mining
  • Decision Tree
  • Machine Learning
اعتمادی، حسین و حسن زلقی. (1392). کاربرد رگرسیون لجستیک درشناسایی گزارشگری مالی متقلّبانه. دانش حسابرسی، سال سیزدهم، شماره 51، تابستان 1392.
افلاطونی، عباس. (1394). تجزیه و تحلیل آماری با Eviews در تحقیقات حسابداری و مدیریت مالی. تهران: انتشارات ترمه.
بروکس، کریس. (1971). مقدمه ای بر اقتصادسنجی مالی، احمد بدری و عبدالمجید عبدالباقی، تهران: انتشارات نص، (1389).
پورحیدری، امید و سعید بذرافشان. (1391). بررسی سودمندی استفاده از چک لیست راهنمای کشف تقلّب در ارزیابی خطر تقلّب مدیریت. پژوهش­های تجربی حسابداری: 1 (3) 86-69.
رهنمای رودپشتی، فریدون. (1391). داده­کاوی و کشف تقلّب­های مالی. دانش حسابداری و حسابرسی مدیریت: 1 (3). 33-17.
زارع بهنمیری، محمدجواد و اسفندیار ملکیان کله بستی. (1395). رتبه بندی عوامل مؤثر بر احتمال تقلّب مالی با توجه به گزارش حسابرسی صورت­های مالی. پژوهش­های تجربی حسابداری: 6 (21)، 17-1
فرج­زاده دهکردی، حسن و لیلا آقایی. (1394). سیاست تقسیم سود و گزارشگری مالی متقلّبانه. مطالعات تجربی حسابداری مالی: 13 (45). 114-97.
کمیته تدوین استانداردهای حسابرسی. (1384). استاندارد حسابرسی240. مسئولیت حسابرس در ارتباط با تقلّب و اشتباه، بند 4.
مصلح شیرازی، علی نقی، محمد، نمازی، علی، محمدی و احمد رجبی. (1392). تئوری چشم انداز و مدلسازی الگوی تصمیم­گیری مدیران در بخش صنعت. چشم انداز مدیریت صنعتی: 6 (10) 33-9.
مظلومی، نادر، فریبا، لطیفی و هیوآ آسایی. (1386). بررسی رابطه ریسک­پذیری مدیران با عملکرد سازمان­ها در شرکت­های پذیرفته شده در بورس اوراق بهادار تهران. فصلنامه مطالعات مدیریت: 14 (56) 92-71.
مهرانی، کاوه و رضا حصارزاده. (1387). مروری بر تئوری­ها و مدل­های کشف تقلّب. دانش و پژوهش حسابداری، زمستان 1387: (15) 11-6.
نمازی، محمد و فهیمه ابراهیمی. (1395). مدل و تعیین اولویت عوامل مؤثر بر قصدگزارش تقلّب­های مالی توسط حسابداران. مطالعات تجربی حسابداری مالی، سال12، شماره 49، بهار 1395، 28-1.
وحیدی الیزی، ابراهیم و حامد حامدیان. (1388). برداشت حسابرسان ایران از کارایی علایم خطر در کشف گزارشگری مالی متقلّبانه. تحقیقات حسابداری، شماره 3، پاییز 1388: 197-162.
Aflatooni, A. (2015). Statistical Analysis in Accounting and Financial Management by Eviews (Vol. 2). Tehran: Termeh. [In Persian]
Alden, M. E. , Bryan, D. M. , Lessley, B. J. , & Tripathy, A. (2012). Detection of financial statement fraud using evolutionary algorithms. Journal of Emerging Technologies in Accounting, 9 (1) , 71–94.
Amani, F. A. , & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
Anandarajan, M. , & Anandarajan, A. (1999). A comparison of machine learning techniques with a qualitative response model for auditor's going concern reporting. Expert Systems with Applications, 16 (4) , 385–392.
Antweiler, W, & Frank, M. (2004). Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards. Journal of Finance, 59 (3) , 1259–1294.
Baum, C. F. (2006). An Introduction to Modern Econometrics Using Stata. College Station, Texas: Stata Press.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
Brooks, C. (1971). Introductory Econometrics for Finance (A. Badri & A. Abdolbaghi, Trans. Vol. 1). Tehran: Nass. [In Persian]
Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
Burns, N, & Kedia, S. (2006). The Impact of Performance-based Compensation on Misreporting. Journal of Financial Economics, 79 (1) , 35–67.
Cecchini, M. , H. Aytug, G. Koehler, & Pathak. , P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50 (1) , 164–175.
Debreceny, R. S. , & Gray, G. L. (2010). Data mining journal entries for fraud detection: an exploratory study. International Journal of Accounting Information Systems, 11 (3) , 157–181.
Dechow, P. , Ge, W. , Larson, C. , & Sloan, R. (2011). Predicting Material Accounting Misstatements. Contemporary Accounting Research, 28 (1) , 17-82.
Edwards, W. (1955). The Prediction of Decisions among Bets. Journal of Experimental Psychology, 50 (3) , 201–214.
Elliott, R. K. , & Willingham, J. J. (1980). Management Fraud: Detection and Deterrence. In (35–46). New York: Petrocelli Books.
Etemadi, H. , & Zalaghi, H. (2013). Application of logistic regression in identifying fraudulent financial reporting. Journal of Audit Science, 13 (51) , 5-23. [In Persian]
Farajzadeh, H. , & Aghaei, L. (2015). Dividend policy and fraudulent financial reporting. Empirical Studies in Financial Accounting, 12 (45) , 97-114. [In Persian]
Fernandes, N, & Guedes, J. (2010). Keeping Up with The Joneses: A Model And A Test Of Collective Accounting Fraud. European Financial Management, 16 (1) , 72–93.
Fung, M. K. (2015). Cumulative Prospect Theory and Managerial Incentives for Fraudulent Financial Reporting. Contemporary Accounting Research, 32 (1) , 55–75.
Goel, S. , & Gangolly, J. (2012). Beyond the numbers: mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management 19 (2) , 75–89.
Greene, W. H. (2012). Econometric Analysys (Vol. 7): Prentice Hall.
Harbaugh, W. T, K. Krause, & Vesterlund, L. (2010). The Fourfold Pattern of Risk Attitudes in Choice and Pricing Tasks. The Economic Journal, 120 (545) , 595–611.
Harnad, S. (2006). The Annotation Game: On Turing (1950) on Computing, Machinery, and Intelligence. In Philosophical and Methodological Issues in the Quest for the Thinking Computer: Kluwer.
Hastie, T. , Tibshirani, R. , & Friedman, J. (2008). The Elements of Statistical Learning Data Mining, Inference, and Prediction (Vol. 2). Stanford, California: Springer.
Hribar, P. , Kravet, T. , & Wilson, R. (2014). A new measure of accounting quality. Review of Accounting Studies, 19, 506–538.
Humphreys, S. , K. Moffit, M. Burns, J. Burgoon, & Felix, W. (2011). Identification of Fraudulent Financial Statements Using Linguistic Credibility Analysis. Decision Support Systems, 50 (3) , 585–594.
Iran Audit Standards Committee. (2005). Auditing Standard Number 240: Auditor's Responsibility Regarding Fraud and Misconduct: Iranian Audit Organization. [In Persian]
Jackson, J. m. (2002). Data mining: a conceptual overview. Communications of the Association for Information Systems, 8 (1) , Article 19.
Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Paper Presented at The European Conference On Machine Learning.
Kim, D. C. (1992). Risk Preferences in Participative Budgeting. The Accounting Review, 67 (2) , 303–318.
Kim, Y. , & Vasarhelyi, M. A. (2012). A model to detect potentially fraudulent/abnormal wires of an insurance company: an unsupervised rule-based approach. Journal of Emerging Technologies in Accounting, 9 (1) , 95–110.
Kochetova-kozloski, N. , Messier Jr. , W. F. , & Eilifsen, A. (2011). Improving auditors' fraud judgments using a frequency response mode. Contemporary Accounting Research, 28 (3) , 837-858.
Kohavi, R. , & Provost, F. (1998). Glossary of Terms. Machine Learning, 30, 271–274.
Li, F. (2010). The information content of forward-looking statements in corporate filings—a naïve Bayesian machine learning approach. Journal of Accounting Research, 48 (5) , 1049–1102.
Lin, J. W. , Hwang, M. I. , & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18 (8) , 657–665.
Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23 (7) , 650–662.
Mazlumi, N. , Latifi, F. , & Aasaai, H. (2008). Risk Taking Behavior of CEO'S and Firm Performance (Companies Registered with Tehran Stock Exchange). Management Studies in Development and Evolution, 14 (56) , 71-92. [In Persian]
Mehrani, K. , & Hesarzadeh, R. (2008). A Review of theories and models of fraud detection. Accounting Knowledge and Research, winter (15) , 6-11. [In Persian]
Moslehshirazi, A. , Namazi, M. , Mohammadi, A. , & Rajabi, A. (2013). Prospect Theory and Modeling Managers Decision Making in the Industrial Sector. Journal of Industrial Management Perspective, (10) , Summer, 9-33. [In Persian]
Namazi, M. , & Ebrahimi, F. (2016). Modeling and Identifying Effective Factors Affecting the Intention of Reporting Financial Fraudulent by Accountant. Empirical Studies in Financial Accounting, 13 (49) , 1-28. [In Persian]
O’Connor, J. P, R. L. Priem, J. E. Coombs, & Gilley, K. M. (2006). Do CEO Stock Options Prevent or Promote Fraudulent Financial Reporting? Academy Of Management Journal, 49 (3) , 483–500.
Perols, J. (2011). Financial statement fraud detection: an analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice and Theory 30 (2) , 19-50.
Pinello, A. S. (2008). Investors’ Differential Reaction to Positive versus Negative Earnings Surprises. Contemporary Accounting Research, 25 (3) , 891–920.
Pourheydari, O. , & Bazrafshan, S. (2012). An Examination of the Usefulness of fraud detection Decision Aid in Assessment of Management Fraud Risk. Journal of Empirical Researches in Accounting, 1 (3) , 67-84. [In Persian]
Purda, L. , & Skillicorn, D. (2015). Accounting Variables, Deception, and a Bag of Words: Assessing the Tools of Fraud Detection. Contemporary Accounting Research, 32 (3) , 1193–1223.
RahnamayRoodposhti, F. (2012). Data mining & Financial Fraud. Journal of Management Accounting and Auditing Knowledge, 1 (3) ,17-34. [In Persian]
Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3 (3) , 210 - 229.
Tackett, J. A. (2013). Association rules for fraud detection. Journal of Corporate Accounting and Finance, 24 (4) , 15–22.
Torugsa, N & Arundel, A. (2017). Rethinking the effect of risk aversion on the benefits of service innovations in public administration agencies. Research Policy, 46 (5) , 900-910.
Tversky, A, & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5 (4) , 297–323.
Vahidi, E. , & Hamedian, H. (2009). Iranian auditors' perceptions of the effectiveness of risk signs in detecting fraudulent financial reporting. Accounting Researches, Fall (3) , 162-197. [In Persian]
Von Neumann, J, & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: Princeton University Press.
Yeh, T. H. , Deng, S. ,. (2012). Application of machine learning methods to cost estimation of product life cycle. International Journal of Computer Integrated Manufacturing 25 (4) , 340–352.
ZareBahnamiri, M. , & Malekian, E. (2016). Ranking the Factors Affecting Financial Fraud Probability, According to Audited Financial Statements. Journal of Empirical Researches in Accounting, 6 (1) , 1-18. [In Persian]