مشایخی، بیتا؛ بیرامی، هانیه؛ بیرامی، هانی. (1393). تعیین ارزش داراییهای ثابت نامشهود با استفاده از شبکه عصبی مصنوعی. پژوهشهای تجربی حسابداری، 4 (14)، 223 تا 238.
میر فخرالدینی، حیدر؛ میبدی، حمید؛ علی مروتی. (1392). پیشبینی مصرف انرژی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک- شبکه عصبی مصنوعی و مقایسه آن با الگوهای سنتی، پژوهشهای مدیریت در ایران، 17 (2)، 197-222.
نقدی، سجاد. (1393). پیشبینی سود هر سهم شرکتهای پذیرفتهشده در بورس اوراق بهادار تهران: مقایسه مدلهای سری زمانی، شبکه عصبی و الگوریتم ژنتیک. پایاننامه کارشناسی ارشد حسابداری، دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری.
Angeline, P. J. (1998 (. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. Evolutionary Programming VII, Lecture Notes in Computer Science, 1447: 601-611.
Baghoumian, R, Mohammadi, H, Naghdi,S. (2015). Macroeconomic Variables Fluctuations and Management Earnings Forecast, Empirical Studies in Financial Accounting Quarterly. 13 (50) , 57-79. (In Persian)
Bonsall, S. B. , Bozanic, Z. , and Fischer, P. E. (2013). What do management earnings forecasts convey about the macro economy? Journal of Accounting Research, 51 (2) , 225–266.
Gallo, L,. Hann, R,. Li. C. (2013). Aggregate Earnings Surprises, Monetary Policy, and Stock Returns. The 2013 JCAE Symposium, University of Maryland.
Haung, M. (2015). Predictive Power of Aggregate Accounting Earnings Growth for Growth of Future GDP. Master Thesis. Eastern Illinois University.
Kalay, A. , S. Nallareddy, and G. Sadka. (2014). Conditional earnings dispersion and the macro economy. Working Paper, Columbia University.
Kennedy J, Eberhart RC. (1995). A new optimizer using particle swarm theory. Proceedings of the 6th international symposium on micro machine and human science. Nagoya, Japan,. 39–43.
Khojasteh Nejhad, M. (2012). Unemployment predicting with nonlinear models, Master of Accounting, university of Sistan and Balouchestan. (In Persian)
Konchitchki, Y. , Patatoukas, P. N. (2014). Taking the pulse of the real economy using financial statement analysis: Implications for macro forecasting and stock valuation. The Accounting Review, 89 (2) , 669–694.
Kothari, K. (2001). Capital market research in accounting. Journal of Accounting and Economics, 31,105–231.
Kothari, S. P. , Shivacumar,L. and Urcan,O. (2013). Aggregate Earnings Surprises and Inflation Forecasts. Working paper. MIT.
Mashayekhi, B, Beirami. H. , Beirami. H. (2012). Signaling and the Valuation at IPOs, Journal of Empirical Research in Accounting. 14 (4) , 222-238. (In Persian)
Mirfakhraddiny, H. ,
Babaei Meybodi, H and
Morovati, A. (2013). Forecast consumption energy of Iran using Hybrid model of artificial neural networks and genetic algorithms and Compared with traditional methodes,
Management Research in Iran.
17 (2) , 197-222. (In Persian)
Naghdi, S. (2014). Forecasting EPS of Iranian Listed Companies: A comparison of Time series, neural network and Genetic algorithms models. Master of Accounting, Shahid Beheshti University. (In Persian)
Nallareddy, S. , and M. Ogneva. (2017). Predicting Restatements in Macroeconomic Indicators Using Accounting Information. The Accounting Review, 92 (2) , 151-182.
Ogneva,M. (2013). Discussion of What Do Management Earnings Forecasts Convey About the Macro economy? Journal of Accounting Research, 51 (2) , 267-279.
Shivakumar. L, and Oktay. O (2014). Why do aggregate earnings shockspredict future in. ation shocks? 11th London Business School Accounting Symposium.
Trasvirta,T. (2005). Forecasting economic variables with nonlinear models, SSE/EFI Working Paper Series in Economics and Finance. No. 598.