مدل‌سازی و پیش‌بینی شاخص‌های اقتصادی با استفاده از سودهای کل حسابداری و پیش‌بینی شده توسط مدیران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری حسابداری، دانشگاه شهید بهشتی، تهران، ایران

2 دانشیار حسابداری، دانشگاه شهید بهشتی، تهران، ایران

3 دانشیار اقتصاد، دانشگاه شهید بهشتی، تهران، ایران

4 دانشیار حسابداری، دانشگاه تبریز، ایران

چکیده

سودهای حسابداری به دلیل جامعیت آن به اصطلاح آینه تمام قد از عملکرد شرکت محسوب می‌شوند. علاوه بر این یکی از مهم‌ترین رویکردهای پژوهش‌های حوزه افشای اختیاری این است که پیش‌بینی‌های مدیریت به دلیل دسترسی مدیران به برخی اطلاعات محرمانه، شاخص به موقعی در راستای ارزیابی وضعیت فعلی و آتی اقتصادی باشد، لذا در پژوهش حاضر به بررسی این نکته پرداخته شده است که آیا سودهای کل حسابداری (سود خالص و سود ناخالص) در کنار برخی از اطلاعات افشا شده توسط مدیران نظیر پیش‌بینی سود می‌تواند به عنوان شاخص پیش‌بینی کننده متغیرهای اقتصادی (نرخ تورم و نرخ بیکاری) باشند یا خیر. در همین راستا تعداد 88 شرکت پذیرفته شده در بورس اوراق بهادار تهران در بازه زمانی 1385 تا 1395 به عنوان نمونه آماری پژوهش انتخاب شده است. همچنین در راستای پاسخگوئی به سؤال پژوهش، سه مدل‌ مبتنی بر شبکه‌های عصبی، الگوریتم ژنتیک و الگوریتم تجمع ذرات طراحی و نتایج آنها مقایسه شده است.  نتایج بیانگر آن است که استفاده از الگوریتم تجمع ذرات و ژنتیک در آموزش شبکه عصبی مؤثر است. همچنین نتایج مبین آن است که سودهای کل حسابداری شاخص مؤثری در پیش‌بینی متغیرهای اقتصادی محسوب می‌شوند. این یافته نشانگر اهمیت اطلاعات حسابداری در سطح کلان اقتصادی است

کلیدواژه‌ها


عنوان مقاله [English]

Macro-economic Modeling and Forecasting using aggregate Earnings and Management Earnings Forecasts

نویسندگان [English]

  • sajjad naghdi 1
  • gholamhossein assadi 2
  • alireza fazlzadeh 3
  • mohammad noferesti 4
1 shahid beheshti university- tehran-iran
2 shahid beheshti
3 tabriz university- tabriz-iran
4 economic-shahid beheshti
چکیده [English]

Accounting earnings, as a comprehensive item, represent corporate performance. Furthermore, one of the main approaches in the voluntary disclosure researches is that earnings forecasts of firm managers as insiders with access to confidential information may be a timely indicator of current and future economic status of the firm. Therefore, this research is aimed to investigate whether total accounting income, including net or gross, beside some management disclosures like earnings forecast, is an indicator of economic variables like inflation rate or unemployment rate, or not? The sample includes 88 firms listed in the Tehran stock exchange during the years from 2006 to 2016 .To answer the research question, three models based on neural network, genetic algorithm, and particle swarm optimization algorithm are designed and their results are compared. Results indicate that using genetic and particle swarm optimization algorithm is an effective way in instruction of neural network. The results also indicate that total accounting income is accounted for as an effective indicator of economic variables. Overall, the findings emphasize the importance of accounting information in macroeconomic.

کلیدواژه‌ها [English]

  • Unemployment rate
  • Inflation Rate
  • Artificial intelligence models
باغومیان، رافیک؛ محمدی، حجت؛ نقدی، سجاد (1395). نوسان متغیرهای کلان اقتصادی و پیش‌بینی سود توسط مدیران، مطالعات تجربی حسابداری مالی، 13: 57-79.
خجسته نژاد. (1391). پیش‌بینی نرخ بیکاری با استفاده از مدل‌های غیر خطی. پایان نامه کارشناسی ارشد رشته اقتصاد، دانشگاه سیستان و بلوچستان، دانشکده علوم اقتصادی.
مشایخی، بیتا؛ بیرامی، هانیه؛ بیرامی، هانی. (1393). تعیین ارزش دارایی­های ثابت نامشهود با استفاده از شبکه عصبی مصنوعی. پژوهش‌های تجربی حسابداری، 4 (14)، 223 تا 238.
میر فخرالدینی، حیدر؛ میبدی، حمید؛ علی مروتی. (1392). پیش‌بینی مصرف انرژی ایران با استفاده از مدل ترکیبی الگوریتم ژنتیک- شبکه عصبی مصنوعی و مقایسه آن با الگوهای سنتی، پژوهش‌های مدیریت در ایران، 17 (2)، 197-222.
نقدی، سجاد. (1393). پیش‌بینی سود هر سهم شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران: مقایسه مدل‌های سری زمانی، شبکه عصبی و الگوریتم ژنتیک. پایان‌نامه کارشناسی ارشد حسابداری، دانشگاه شهید بهشتی، دانشکده مدیریت و حسابداری.
Angeline, P. J. (1998 (. Evolutionary optimization versus particle swarm optimization: Philosophy and performance differences. Evolutionary Programming VII, Lecture Notes in Computer Science, 1447: 601-611.
Baghoumian, R, Mohammadi, H, Naghdi,S. (2015). Macroeconomic Variables Fluctuations and Management Earnings Forecast, Empirical Studies in Financial Accounting Quarterly. 13 (50) , 57-79. (In Persian)
Bonsall, S. B. , Bozanic, Z. , and Fischer, P. E. (2013). What do management earnings forecasts convey about the macro economy? Journal of Accounting Research, 51 (2) , 225–266.
Gallo, L,. Hann, R,. Li. C. (2013). Aggregate Earnings Surprises, Monetary Policy, and Stock Returns. The 2013 JCAE Symposium, University of Maryland.
Haung, M. (2015). Predictive Power of Aggregate Accounting Earnings Growth for Growth of Future GDP. Master Thesis. Eastern Illinois University.
Kalay, A. , S. Nallareddy, and G. Sadka. (2014). Conditional earnings dispersion and the macro economy. Working Paper, Columbia University.
Kennedy J, Eberhart RC. (1995). A new optimizer using particle swarm theory. Proceedings of the 6th international symposium on micro machine and human science. Nagoya, Japan,. 39–43.
Khojasteh Nejhad, M. (2012). Unemployment predicting with nonlinear models, Master of Accounting, university of Sistan and Balouchestan. (In Persian)
Konchitchki, Y. , Patatoukas, P. N. (2014). Taking the pulse of the real economy using financial statement analysis: Implications for macro forecasting and stock valuation. The Accounting Review, 89 (2) , 669–694.
Konchitchki, Y. , Patatoukas, P. N. (2016). From Forecasting to Nowcasting the Macroeconomy: A Granular-Origins Approach Using Accounting Earnings Data, Review of Accounting Studies Conference.
Kothari, K. (2001). Capital market research in accounting. Journal of Accounting and Economics, 31,105–231.
Kothari, S. P. , Shivacumar,L. and Urcan,O. (2013). Aggregate Earnings Surprises and Inflation Forecasts. Working paper. MIT.
Mashayekhi, B, Beirami. H. , Beirami. H. (2012). Signaling and the Valuation at IPOs, Journal of Empirical Research in Accounting. 14 (4) , 222-238. (In Persian)
Mirfakhraddiny, H. , Babaei Meybodi, H and Morovati, A. (2013). Forecast consumption energy of Iran using Hybrid model of artificial neural networks and genetic algorithms and Compared with traditional methodes, Management Research in Iran. 17 (2) , 197-222. (In Persian)
Naghdi, S. (2014). Forecasting EPS of Iranian Listed Companies: A comparison of Time series, neural network and Genetic algorithms models. Master of Accounting, Shahid Beheshti University. (In Persian)
Nallareddy, S. , and M. Ogneva. (2017). Predicting Restatements in Macroeconomic Indicators Using Accounting Information. The Accounting Review, 92 (2) , 151-182.
Ogneva,M. (2013). Discussion of What Do Management Earnings Forecasts Convey About the Macro economy? Journal of Accounting Research, 51 (2) , 267-279.
Shivakumar. L, and Oktay. O (2014). Why do aggregate earnings shockspredict future in. ation shocks? 11th London Business School Accounting Symposium.
Trasvirta,T. (2005). Forecasting economic variables with nonlinear models, SSE/EFI Working Paper Series in Economics and Finance. No. 598.