الگوی پیش‌بینی نکول شرکتی در صنایع منتخب فهرست‌شده در بورس اوراق بهادار تهران پیش‌بینی نکول شرکتی در صنایع منتخب فهرست‌شده در بورس اوراق بهادار تهران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دکترای حسابداری و دانشیار، دانشگاه علامه طباطبائی، تهران، ایران

2 دکترای مدیریت مالی، دانشگاه علامه طباطبائی، تهران، ایران

چکیده

با توجه به اهمیت بسیار زیاد پیش‌بینی نکول شرکتی برای ذینفعان مختلف، این پژوهش قصد دارد محرک‌های بالقوه این رویداد را شناسایی و الگویی برای پیش‌بینی آن در صنایع خودرو و ساخت قطعات، فلزات اساسی و محصولات شیمیایی در بورس اوراق بهادار تهران ارائه نماید. در این پژوهش، ابتدا با استفاده از مطالعه اسنادی و روش دلفی فازی، عوامل و متغیرهای بالقوه تأثیرگذار بر روی نکول شرکتی شناسایی می­شود، سپس محرک­های نکول شرکتی به‌شکل تجربی با استفاده از تکنیک مدل‌سازی معادلات ساختاری کمترین مربعات جزئی معرفی و الگویی جهت پیش‌بینی آن در هر یک از صنایع منتخب فهرست‌شده در بورس اوراق بهادار تهران ارائه می‌گردد. در پایان نیز، صحت و دقت الگوی استخراج‌شده آزمون می­شود. بر اساس نتایج پژوهش، نسبت‌های سود خالص به مجموع دارایی‌ها، سود عملیاتی به مجموع دارایی‌ها، سود عملیاتی به مجموع بدهی‌ها، فروش به مجموع دارایی‌ها، نرخ رشد فروش، سود انباشته به مجموع دارایی‌ها، سرمایه در گردش به مجموع دارایی‌ها، وجوه نقد به بدهی‌های جاری، بدهی‌های جاری به مجموع دارایی‌ها، مجموع بدهی‌ها به مجموع دارایی‌ها، مجموع وام‌های کوتاه‌مدت و بلندمدت به مجموع حقوق صاحبان سهام، مجموع وام‌های کوتاه‌مدت و بلندمدت به مجموع دارایی‌ها، خالص جریان نقدی عملیاتی به فروش، خالص جریان‌ نقدی عملیاتی به سود عملیاتی، خالص جریان‌ نقدی عملیاتی به مجموع بدهی‌ها، خالص جریان نقدی عملیاتی به بدهی‌های جاری و ارزش بازار سهام شرکت به مجموع بدهی‌ها را می‌توان در مجموع به‌عنوان محرک‌های نکول شرکتی در صنایع نامبرده معرفی کرد. مشاهده شد که در دو صنعت خودرو و ساخت قطعات و فلزات اساسی، نسبت‌های حسابداری و در صنعت محصولات شیمیایی، نسبت‌های حسابداری و متغیرهای بازاری به‌عنوان محرک‌های نکول شرکتی معرفی شده‌اند و سایر محرک‌های بالقوه (طبق یافته‌های پژوهش‌های پیشین و نظرهای خبرگان) شامل نماگرهای کلان اقتصادی، عوامل غیرمالی و معیارهای کیفیت سود، نقشی در پیش‌بینی نکول شرکتی ندارند.

کلیدواژه‌ها


عنوان مقاله [English]

A Model for Corporate Default Prediction in Some Industries listed in Tehran Stock Exchange

نویسندگان [English]

  • Ghasem Bolo 1
  • Maysam Ahmadvand 2
1 Ph.D. in Accounting and Associate Prof., Allameh Tabataba’i University
2 Ph.D. Student in Finance, Allameh Tabataba’i University, Tehran, Iran
چکیده [English]

Considering the great importance of corporate default prediction for various stakeholders, the study aims to identify the potential drivers of this event and to present a model for predicting corporate default in automotive and auto parts manufacturing, basic metals, and chemicals industries listed in Tehran stock exchange.  This study, at first, identifies the factors affecting corporate default, by conducting library research and through the fuzzy delphi method. Then, using partial least squares structural equation modeling (PLS-SEM) technique, corporate default drivers are introduced, and a model for predicting this event in each industry is extracted and presented. Finally, the accuracy of the extracted model is tested.  According to the findings, the following variables can be introduced as corporate default drivers in the above mentioned industries: the ratios of net income to total assets, earnings before interest and tax to total assets, earnings before interest and tax to total liabilities, sales to total assets, sales growth rate, retained earnings to total assets, net working capital to total assets, cash to current liabilities, current liabilities to total assets, total liabilities to total assets, total short-term and long-term loans to total equity, total short-term and long-term loans to total assets, net operating cash flow to sales, net operating cash flow to earnings before interest and tax, net operating cash flow to total liabilities, net operating cash flow to current liabilities, and market capitalization to total liabilities.  According to thefindings, in automotive and auto parts manufacturing industry and basic metals industry, only accounting ratios, and in chemicals industry, both accounting ratios and market variables are introduced as corporate default drivers. Moreover, other potential drivers (according to previous research findings and experts’ opinions) including macroeconomic indicators, nonfinancial factors, and earning quality measures do not play any role in predicting corporate default. 

کلیدواژه‌ها [English]

  • Corporate Default
  • Accounting Ratios
  • Market Variables
آذری جعفری، هانیه. (1394). بررسی رابطه بین ویژگی‌های شرکت و بازده سهام با ریسک درماندگی در شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. پایان‌نامه کارشناسی ارشد، مؤسسه آموزش عالی غیرانتفاعی سمنگان.
ابراهیمی، سیدکاظم؛ بهرامی‌نسب، علی؛ ممشلی، رضا. (1395). تأثیر بحران مالی بر کیفیت سود. بررسی‌های حسابداری و حسابرسی: 23 (4)، 415-434.
احمدپور، احمد؛ شهسواری، معصومه. (1393). مدیریت سود و تأثیر کیفیت سود بر سودآوری آتی شرکت‌های ورشکسته بورس اوراق بهادار تهران. مطالعات تجربی حسابداری مالی: 11 (41)، 37-58.
احمدوند، میثم. (1395). نقش مؤسسات رتبه‌بندی اعتباری در توسعه بازار سرمایه. ماهنامه بازار و سرمایه: 7 (78-77)، 24.
پیری، پرویز؛ خداکریمی، پری. (1396). پیش‌بینی درماندگی مالی بر مبنای الگوی ترکیبی از اطلاعات حسابداری و بازار با رویکرد رگرسیون لجستیک. مطالعات تجربی حسابداری مالی: 14 (55)، 145-168.
ثقفی، علی؛ بولو، قاسم؛ دانا، محمدمهدی. (1394). رابطه کیفیت سود و عدم تقارن اطلاعاتی. پژوهش‌های تجربی حسابداری: 4 (16)، 1-16.
خلیفه سلطانی، سیداحمد؛ اسماعیلی، فاطمه. (1393). تأثیر چرخه تجاری بر پایداری مدل‌های پیش‌بینی ورشکستگی. پژوهش‌های تجربی حسابداری: 4 (13)، 1-22.
خواجوی، شکراله؛ قدیریان آرانی، محمدحسین. (1397). توانایی مدیران، عملکرد مالی و خطر ورشکستگی. دانش حسابداری: 9 (1)، 35-61.
داوری، علی؛ رضازاده، آرش. (1395). مدل‌سازی معادلات ساختاری با نرم‌افزار PLS (چاپ سوم)، تهران: انتشارات جهاد دانشگاهی.
راموز، نجمه؛ محمودی، مریم. (1396). پیش‌بینی ریسک ورشکستگی مالی با استفاده از مدل ترکیبی در بورس اوراق بهادار تهران، راهبرد مدیریت مالی: 5 (1)، 51-75.
رستمی، محمدرضا؛ فلاح شمس، میرفیض؛ اسکندری، فرزانه. (1390). ارزیابی درماندگی مالی شرکت­‌های پذیرفته­شده در بورس اوراق بهادار تهران: مطالعه مقایسه­‌ای بین تحلیل پوششی داده­‌ها و رگرسیون لجستیک. پژوهش­های مدیریت در ایران: 15 (3)، 129-147.
صادقی، حسین؛ رحیمی، پریسا؛ سلمانی، یونس. (1393). تأثیر عوامل کلان اقتصادی و نظام راهبری بر درماندگی مالی شرکت‌های تولیدی پذیرفته‌شده در بورس اوراق بهادار تهران. اقتصاد پولی، مالی: 21 (8)، 127-107.
فدائی‌نژاد، محمداسماعیل؛ اسکندری، رسول. (1390). طراحی و تبیین مدل پیش‌بینی ورشکستگی شرکت‌ها در بورس اوراق بهادار تهران. تحقیقات حسابداری و حسابرسی: 3 (9)، 38-55.
فدائی‌نژاد، محمداسماعیل؛ شهریاری، سارا؛ سلیم، فرشاد. (1394). تجزیه و تحلیل رابطه ریسک درماندگی مالی و بازده سهام. بررسی‌های حسابداری و حسابرسی: 22 (2)، 243-262.
فلاح‌پور، سعید؛ ارم، اصغر. (1395). پیش‌بینی درماندگی مالی شرکت‌ها با استفاده از الگوریتم کلونی مورچگان، تحقیقات مالی: 18 (2)، 347-368.
فلاح‌نژاد، فرهاد؛ صیادی، محمد. (1394). بررسی تغییرات کیفیت سود در طول زمان با استفاده از داده‌های پنلی. پژوهش‌های تجربی حسابداری: 4 (16)، 71-84.
منصور، جهانگیر. (1396). قانون تجارت- مجموعه قوانین با آخرین اصلاحات (چاپ صد و پنجاهم)، تهران: نشر دیدار.
منصورفر، غلامرضا؛ غیور، فرزاد؛ لطفی، بهناز. (1394). توانایی ماشین بردار پشتیبان در پیش‌بینی درماندگی مالی. پژوهش‌های تجربی حسابداری: 5 (17)، 177-195.
مهرانی، ساسان؛ کامیابی، یحیی؛ غیور، فرزاد. (1396). بررسی تأثیر شاخص‌های کیفیت سود بر قدرت مدل‌های پیش‌بینی درماندگی مالی. بررسی‌های حسابداری و حسابرسی: 24 (1)، 103-126.
مهربان‌پور، محمدرضا؛ ندیری، محمد؛ جندقی قمی، محمد. (1396). اثر جایگاه مالی بر کیفیت سود شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران، بررسی‌های حسابداری و حسابرسی: 24 (1)، 146-127.
نمازی، محمد؛ قدیریان آرانی، محمدحسین. (1393). بررسی رابطه سرمایه فکری و اجزای آن با خطر ورشکستگی شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران. پژوهش‌های تجربی حسابداری: 3 (11)، 141-115.
وظیفه‌دوست، حسین؛ زنگنه، طیبه. (1394). ارائه مدل پیش‌بینی ورشکستگی شرکت‌های بورس اوراق بهادار تهران مبتنی بر مدل ترکیبی شبکه عصبی گروهی دستکاری داده‌ها و الگوریتم ژنتیک. پژوهش‌های مدیریت راهبردی: 21 (57)، 83-100.
Abinzano, I. ; Muga, L. & Santamaria, R. (2013). Is default risk the hidden factor in momentum returns? Some empirical results. Accounting & Finance: 54 (3) , 671-696.
Ahmadpour, A. & Shahsavari, M. (2014). Earnings management and the effect of earnings quality on future profitability of Tehran stock exchange bankrupt firms. Empirical Studies in Financial Accounting Quarterly: 11 (41) , 37-58. (In Persian)
Ahmadvand, M. (2016). The role of credit rating agencies in the capital market development. Capital & Market Monthly: 7 (77-78) , 24. (In Persian)
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance: 23 (4) , 589-609.
Asgarnezhad Nouri, B. & Soltani, M. (2016). Designing a bankruptcy prediction model based on account, market and macroeconomic variables (Case study: Cyprus stock exchange). Iranian Journal of Management Studies: 9 (1) , 125-147.
Atsu, F. & Costantini, M. (2015). Modelling corporate failure dependence of UK public listed firms. Working Paper, Brunel University.
Azari Jafari, H. (2015). Studying the relationship between firm's characteristics and stock return with financial distress risk of firms listed on Tehran stock exchange. Master Thesis, Non-profit Institution of Higher Education in Samangan. (In Persian)
Balcaen, S. & Ooghe, H. (2006). 35 years of studies on business failure: An overview of the classic statistical methodologies and their related problems. The British Accounting Review: 38 (1) , 63-93.
Bartual, C. ; Garcia, F. ; Guijarro, F. & Moya, I. (2013). Default prediction of Spanish companies: A logistic analysis. Intellectual Economics: 7 (3) , 333-343.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Empirical Research in Accounting: Selected Studies: 4, 71-111.
Bhattacharjee, A. ; Higson, C. ; Holly, S. & Kattuman, P. (2009). Macroeconomic instability and business exit: Determinants of failures and acquisitions of UK firms. Economica: 76 (301) , 108-131.
Bhimani, A. ; Gulamhussen, M. A. & Lopes, S. DR. (2010). Accounting and non-accounting determinants of default: An analysis of privately-held firms. Journal of Accounting and Public Policy: 29, 517-532.
Bonfim, D. (2009). Credit risk drivers: Evaluating the contribution of firm level information and of macroeconomic dynamics. Journal of Banking and Finance: 33 (2) , 281-299.
Budipratama, S. & Dito, D. (2016). Corporate Default and Rating Transition Study (1996-2015). PEFINDO Annual Study.
Chaudhuri, A. (2013). Bankruptcy prediction using bayesian, hazard, mixed logit and rough bayesian models: A comparative analysis. Computer and Information Science: 6 (2) , 103-125.
Chava, S. & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance: 8 (4) , 537-569.
Cheng, CH. ; Chan, CP. & Yang, JH. (2018). A seasonal time-series model based on gene expression programming for predicting financial distress. Computational Intelligence and Neuroscience: 2018 (2) , 1-14.
Chung H. ; Chen WP. & Chen YD. (2010). The effect of default risk on equity liquidity: Evidence based on the panel threshold model. In: Lee, CF. ; Lee, A. C. & Lee, J. (eds). Handbook of quantitative finance and risk management. Boston, MA: Springer.
Dahiya, S. ; Saunders, A. & Srinivasan, A. (2003). Financial distress and bank lending relationships. The Journal of Finance: 58 (1) , 375-399.
Davari, A. & Rezazadeh, A. (2016). Structural equation modeling with PLS (Third Ed.). Tehran: Jahade Daneshgahi Publication. (In Persian)
Duda, M. & Schmidt, H. (2010). Bankruptcy prediction: Static logit model versus discrete hazard models incorporating macroeconomic dependencies. Master Thesis, Lund University.
Ebrahimi, S. K. ; Bahraminasab, A. & Mamashli, R. (2017). The effect of financial crisis on earnings quality. Journal of the Accounting and Auditing Review: 23 (4) , 415-434. (In Persian)
Fadaeinejad, M. E. & Eskandari, R. (2011). Designing and explaining bankruptcy prediction model in Tehran Stock Exchange. Accounting and Auditing Research: 3 (9) , 38-55. (In Persian)
Fadaeinejad, M. E. ; Shahriary, S. & Salim, F. (2015). An analysis of the relationship between financial distress risk and equity returns. Journal of the Accounting and Auditing Review: 22 (2) , 243-262. (In Persian)
Fallahnejad, F. & Sayyadi, M. (2015). Investigating earnings quality changes over time using panel data. Journal of Empirical Research in Accounting: 4 (16) , 71-84. (In Persian)
Fallahpour, S. & Eram, A. (2016). Predicting companies’ financial distress by using ant colony algorithm. Financial Research Journal: 18 (2) , 347-368. (In Persian)
Fawzi, N. S. ; Kamaluddin, A. & Sanusi, Z. M. (2015). Monitoring distressed companies through cash flow analysis. Procedia Economics and Finance: 28, 36-144.
Fischinger, S. (2017). Earnings quality and European companies’ access to credit. Master Thesis, Ghent University.
Gupta, V. (2017). A survival approach to prediction of default drivers for Indian listed companies. Theoretical Economics Letters: 7, 116-138.
Habibi, A. ; Firouzi Jahantigh, F. & Sarafrazi, A. (2015). Fuzzy Delphi technique for forecasting and screening items. Asian Journal of Research in Business Economics and Management: 5 (2) , 130-143.
Hardinata, L. ; Warsito, B. & Suparti (2018). Bankruptcy prediction based on financial ratios using Jordan recurrent neural networks: A case study in Polish companies. Journal of Physics: Conference Series: 1025, 1-7.
Hemmatfar, M. & Hosseinipak, S. A. (2017). Prediction of firms' financial distress using Adaboost algorithm and comparing its accuracy to artificial neural networks. Revista QUID, (Special Issue): 2151-2158.
Hillegeist, S. A. ; Keating, E. K. ; Cram, D. P. & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of Accounting Studies: 9, 5-22.
Keasey, K. & Watson, R. (1991). Financial distress prediction models: A review of their usefulnes. British Journal of Management: 2 (2) , 89-102.
Khajavi, Sh. & Ghadirian Arani, M. H. (2018). Managerial ability, financial performance and bankruptcy risk. Journal of Accounting Knowledge: 9 (1) , 35-61. (In Persian)
Khalifesultani, S. A. & Esmaili, F. (2014). Business cycle and stability of bankruptcy prediction models. Journal of Empirical Research in Accounting: 4 (13) , 1-22. (In Persian)
Koopman, S. J. ; KrÄaussl, R. ; Lucas, A. & Monteiro, A. B. (2009). Credit cycles and macrofundamentals. Journal of Empirical Finance: 16, 42-54.
Lennox, C. S. (1999). Identifying failing companies: A reevaluation of the logit, probit, and DA approaches. Journal of Economics and Business: 51 (4) , 347-364.
Lensberg, T. ; Eilifsen, A. & McKee, T. E. (2006). Bankruptcy theory development and classification via genetic programming. European Journal of Operational Research: 169 (2) , 677-697.
Li, D. & Xia, Y. (2015). The effect of stock liquidity on default risk. Working Paper, University of Hong Kong.
Li, F. ; Abeysekera, I. & Ma, S. (2013). Earnings quality and stress levels of Chinese listed companies. Academy of Taiwan Business Management Review: 9 (1) , 109-116.
Li, F. ; Abeysekera, I. & Ma, S. (2014). The effect of financial status on earnings quality of Chinese listed firms. Journal of Asia-Pacific Business: 15 (1) , 4-26.
Lin, WY. ; Chu, YD. & Liao, DY. (2018). Using artificial intelligence technology for corporate financial diagnostics. International Journal of Business and Finance Management Research: 6, 7-21.
Lussier, R. N. & Halabi, C. E. (2010). A three-country comparison of the business success versus failure prediction model. Journal of Small Business Management: 48 (3) , 360-377.
Mansour, J. (2017). Commercial Law- Set of rules with the latest amendments (150th Ed.). Tehran: Didar Publications. (In Persian)
Mansourfar, GH. ; Ghayour, F. & Lotfi, B. (2015). The ability of support vector machine (SVM) in financial distress prediction. Journal of Empirical Research in Accounting: 5 (17) , 177-195. (In Persian)
Mardani, M. ; Fallah, R. & Golestani, R. (2016). A review of the relationship between the structure of corporate governance and financial distress (financial crisis) in companies listed on Tehran stock exchange. Account and Financial Management Journal: 1 (4) , 208-226.
Mehrabanpour, M. R. ; Nadiri, M. & Jandaghi Ghomi, M. (2017). The effect of financial status on earnings quality of listed firms in Tehran stock exchange. Journal of the Accounting and Auditing Review: 24 (1) , 127-146. (In Persian)
Mehrani, S. ; Kamyabi. Y. & Ghayour, F. (2017). Reviewing the effectiveness of earnings quality indices on the power of financial distress prediction models. Journal of the Accounting and Auditing Review: 24 (1) , 103-126. (In Persian)
Mihalovič, M. (2016). Performance comparison of multiple discriminant analysis and logit models in bankruptcy prediction. Economics and Sociology: 9 (4) , 101-118.
Mishra, P. S. (2013). Relationship between macroeconomic variables and corporate health of manufacturing firms in India. Journal of Quantitative Economics: 11 (1 & 2) , 230-249.
Muller, G. H. ; Steyn-Bruwer, B. W. & Hamman, W. D. (2009). Predicting financial distress of companies listed on the JSE – comparison of techniques. South African Journal of Business Management: 40 (1) , 21-32.
Namazi, M. & Ghadiryian Arani, M. H. (2014). Investigation of the relationship between bankruptcy risk, intellectual capital and its components for the companies listed on Tehran stock exchange. Journal of Empirical Research in Accounting: 3 (3) , 115-141. (In Persian)
Öcal, N. ; Ercan, M. K. & Kadıoğlu, E. (2015). Predicting financial failure using decision tree algorithms: An empirical test on the manufacturing industry at Borsa Istanbul. International Journal of Economics and Finance: 7 (7) , 189-206.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research: 18 (1) , 109-131.
Outecheva, N. (2007). Corporate financial distress: An empirical analysis of distress risk. Ph. D. Thesis, The University of St. Gallen.
Piri, P. & Khodakarimi, P. (2017). Predicting financial distress using combined model of accounting and market data with logistic regression approach. Empirical Studies in Financial Accounting: 14 (55) , 145-168. (In Persian)
Ramooz, N. & Mahmoudi, M. (2017). Predicting financial bankruptcy risk using hybrid model in Tehran stock exchange. Journal of Financial Management Strategy: 5 (16) , 51-75. (In Persian)
Rezaie Doolatabadi, H. ; Hoseini, S. M. & Tahmasebi, R. (2013). Using decision tree model and logistic regression to predict companies’ financial bankruptcy in Tehran stock exchange. International Journal of Emerging Research in Management & Technology: 2 (9) , 7-16.
Sadeghi, H. ; Rahimi, P. & Salmani, Y. (2014). The effect of macroeconomic and governance factors on financial distress in manufacturing firms listed on Tehran stock exchange. Financial Monetary Economics: 21 (8) , 107-127. (In Persian)
Saghafi, A. ; Bolo, Gh. & Dana, M. M. (2015). The relation between earnings quality and information asymmetry. Journal of Empirical Research in Accounting: 4 (16) , 1-16. (In Persian)
Sartori, F. ; Mazzucchelli, A. & Di Gregorio, A. (2016). Bankruptcy forecasting using case-based reasoning: The CRePERIE approach. Expert Systems with Applications: 64, 400-411.
Sheikh, S. & Yahya, M. (2015). Bankruptcy prediction static logit and discrete hazard models incorporating macoreconomic dependencies and industry effects. Master Thesis, Norwegian School of Economics.
Taremi, K. & khodaverdi, Y. (2015). Investigating the effect of macroeconomic variables on financial distress among the companies listed on Tehran stock exchange (Case study: pharmaceutical companies). Retrieved from https: //www. civilica. com/Paper-ICMBA01-ICMBA01_108. html.
Tinoco, M. H. & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis: 30, 394-419.
Trujillo-Ponce, A. ; Samaniego-Medina, R. & Cardone-Riportella, C. (2014). Examining what best explains corporate credit risk: Accounting-based versus market-based models. Journal of Business Economics and Management: 15 (2) , 253-276.
Vazifehdust, H. & Zangene, T. (2015). A hybrid bankruptcy prediction model based on GMDH-type neural network and genetic algorithm for Tehran stock exchange listed companies. Journal of Strategic Management Researches: 21 (57) , 83-100. (In Persian)
Wang, J. (2012). Do firms’ relationships with principal customers/suppliers affect shareholders’ income? Journal of Corporate Finance: 18, 860-878.
Wang, Y. (2011). Corporate default prediction: models, drivers and measurements. Ph. D. Thesis, The University of Exeter.
Wijn, M. F. C. M. & Bijnen, E. J. (2001). Firm size and bankruptcy elasticity. Working Paper, Tilburg University.
Zebardast, M. ; Javid, D. & Taherinia, M. (2014). The use of artificial neural network in predicting bankruptcy and its comparison with genetic algorithm in firms accepted in Tehran stock exchange. Journal of Novel Applied Sciences: 3 (2) , 151-160.