اعتمادی، حسین و حسن زلقی. (1392). کاربرد رگرسیون لجستیک درشناسایی گزارشگری مالی متقلّبانه. دانش حسابرسی، سال سیزدهم، شماره 51، تابستان 1392.
افلاطونی، عباس. (1394). تجزیه و تحلیل آماری با Eviews در تحقیقات حسابداری و مدیریت مالی. تهران: انتشارات ترمه.
بروکس، کریس. (1971). مقدمه ای بر اقتصادسنجی مالی، احمد بدری و عبدالمجید عبدالباقی، تهران: انتشارات نص، (1389).
پورحیدری، امید و سعید بذرافشان. (1391). بررسی سودمندی استفاده از چک لیست راهنمای کشف تقلّب در ارزیابی خطر تقلّب مدیریت. پژوهشهای تجربی حسابداری: 1 (3) 86-69.
رهنمای رودپشتی، فریدون. (1391). دادهکاوی و کشف تقلّبهای مالی. دانش حسابداری و حسابرسی مدیریت: 1 (3). 33-17.
زارع بهنمیری، محمدجواد و اسفندیار ملکیان کله بستی. (1395). رتبه بندی عوامل مؤثر بر احتمال تقلّب مالی با توجه به گزارش حسابرسی صورتهای مالی. پژوهشهای تجربی حسابداری: 6 (21)، 17-1
فرجزاده دهکردی، حسن و لیلا آقایی. (1394). سیاست تقسیم سود و گزارشگری مالی متقلّبانه. مطالعات تجربی حسابداری مالی: 13 (45). 114-97.
کمیته تدوین استانداردهای حسابرسی. (1384). استاندارد حسابرسی240. مسئولیت حسابرس در ارتباط با تقلّب و اشتباه، بند 4.
مصلح شیرازی، علی نقی، محمد، نمازی، علی، محمدی و احمد رجبی. (1392). تئوری چشم انداز و مدلسازی الگوی تصمیمگیری مدیران در بخش صنعت. چشم انداز مدیریت صنعتی: 6 (10) 33-9.
مظلومی، نادر، فریبا، لطیفی و هیوآ آسایی. (1386). بررسی رابطه ریسکپذیری مدیران با عملکرد سازمانها در شرکتهای پذیرفته شده در بورس اوراق بهادار تهران. فصلنامه مطالعات مدیریت: 14 (56) 92-71.
مهرانی، کاوه و رضا حصارزاده. (1387). مروری بر تئوریها و مدلهای کشف تقلّب. دانش و پژوهش حسابداری، زمستان 1387: (15) 11-6.
نمازی، محمد و فهیمه ابراهیمی. (1395). مدل و تعیین اولویت عوامل مؤثر بر قصدگزارش تقلّبهای مالی توسط حسابداران. مطالعات تجربی حسابداری مالی، سال12، شماره 49، بهار 1395، 28-1.
وحیدی الیزی، ابراهیم و حامد حامدیان. (1388). برداشت حسابرسان ایران از کارایی علایم خطر در کشف گزارشگری مالی متقلّبانه. تحقیقات حسابداری، شماره 3، پاییز 1388: 197-162.
Aflatooni, A. (2015). Statistical Analysis in Accounting and Financial Management by Eviews (Vol. 2). Tehran: Termeh. [In Persian]
Alden, M. E. , Bryan, D. M. , Lessley, B. J. , & Tripathy, A. (2012). Detection of financial statement fraud using evolutionary algorithms. Journal of Emerging Technologies in Accounting, 9 (1) , 71–94.
Amani, F. A. , & Fadlalla, A. M. (2017). Data mining applications in accounting: A review of the literature and organizing framework. International Journal of Accounting Information Systems, 24, 32-58.
Anandarajan, M. , & Anandarajan, A. (1999). A comparison of machine learning techniques with a qualitative response model for auditor's going concern reporting. Expert Systems with Applications, 16 (4) , 385–392.
Antweiler, W, & Frank, M. (2004). Is All That Talk Just Noise? The Information Content of Internet Stock Message Boards. Journal of Finance, 59 (3) , 1259–1294.
Baum, C. F. (2006). An Introduction to Modern Econometrics Using Stata. College Station, Texas: Stata Press.
Breiman, L. (2001). Random Forests. Machine Learning, 45, 5-32.
Brooks, C. (1971). Introductory Econometrics for Finance (A. Badri & A. Abdolbaghi, Trans. Vol. 1). Tehran: Nass. [In Persian]
Burges, C. J. C. (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining and Knowledge Discovery, 2, 121-167.
Burns, N, & Kedia, S. (2006). The Impact of Performance-based Compensation on Misreporting. Journal of Financial Economics, 79 (1) , 35–67.
Cecchini, M. , H. Aytug, G. Koehler, & Pathak. , P. (2010). Making words work: Using financial text as a predictor of financial events. Decision Support Systems, 50 (1) , 164–175.
Debreceny, R. S. , & Gray, G. L. (2010). Data mining journal entries for fraud detection: an exploratory study. International Journal of Accounting Information Systems, 11 (3) , 157–181.
Dechow, P. , Ge, W. , Larson, C. , & Sloan, R. (2011). Predicting Material Accounting Misstatements. Contemporary Accounting Research, 28 (1) , 17-82.
Edwards, W. (1955). The Prediction of Decisions among Bets. Journal of Experimental Psychology, 50 (3) , 201–214.
Elliott, R. K. , & Willingham, J. J. (1980). Management Fraud: Detection and Deterrence. In (35–46). New York: Petrocelli Books.
Etemadi, H. , & Zalaghi, H. (2013). Application of logistic regression in identifying fraudulent financial reporting. Journal of Audit Science, 13 (51) , 5-23. [In Persian]
Farajzadeh, H. , & Aghaei, L. (2015). Dividend policy and fraudulent financial reporting. Empirical Studies in Financial Accounting, 12 (45) , 97-114. [In Persian]
Fernandes, N, & Guedes, J. (2010). Keeping Up with The Joneses: A Model And A Test Of Collective Accounting Fraud. European Financial Management, 16 (1) , 72–93.
Fung, M. K. (2015). Cumulative Prospect Theory and Managerial Incentives for Fraudulent Financial Reporting. Contemporary Accounting Research, 32 (1) , 55–75.
Goel, S. , & Gangolly, J. (2012). Beyond the numbers: mining the annual reports for hidden cues indicative of financial statement fraud. Intelligent Systems in Accounting, Finance and Management 19 (2) , 75–89.
Greene, W. H. (2012). Econometric Analysys (Vol. 7): Prentice Hall.
Harbaugh, W. T, K. Krause, & Vesterlund, L. (2010). The Fourfold Pattern of Risk Attitudes in Choice and Pricing Tasks. The Economic Journal, 120 (545) , 595–611.
Harnad, S. (2006). The Annotation Game: On Turing (1950) on Computing, Machinery, and Intelligence. In Philosophical and Methodological Issues in the Quest for the Thinking Computer: Kluwer.
Hastie, T. , Tibshirani, R. , & Friedman, J. (2008). The Elements of Statistical Learning Data Mining, Inference, and Prediction (Vol. 2). Stanford, California: Springer.
Hribar, P. , Kravet, T. , & Wilson, R. (2014). A new measure of accounting quality. Review of Accounting Studies, 19, 506–538.
Humphreys, S. , K. Moffit, M. Burns, J. Burgoon, & Felix, W. (2011). Identification of Fraudulent Financial Statements Using Linguistic Credibility Analysis. Decision Support Systems, 50 (3) , 585–594.
Iran Audit Standards Committee. (2005). Auditing Standard Number 240: Auditor's Responsibility Regarding Fraud and Misconduct: Iranian Audit Organization. [In Persian]
Jackson, J. m. (2002). Data mining: a conceptual overview. Communications of the Association for Information Systems, 8 (1) , Article 19.
Joachims, T. (1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Paper Presented at The European Conference On Machine Learning.
Kim, D. C. (1992). Risk Preferences in Participative Budgeting. The Accounting Review, 67 (2) , 303–318.
Kim, Y. , & Vasarhelyi, M. A. (2012). A model to detect potentially fraudulent/abnormal wires of an insurance company: an unsupervised rule-based approach. Journal of Emerging Technologies in Accounting, 9 (1) , 95–110.
Kochetova-kozloski, N. , Messier Jr. , W. F. , & Eilifsen, A. (2011). Improving auditors' fraud judgments using a frequency response mode. Contemporary Accounting Research, 28 (3) , 837-858.
Kohavi, R. , & Provost, F. (1998). Glossary of Terms. Machine Learning, 30, 271–274.
Li, F. (2010). The information content of forward-looking statements in corporate filings—a naïve Bayesian machine learning approach. Journal of Accounting Research, 48 (5) , 1049–1102.
Lin, J. W. , Hwang, M. I. , & Becker, J. D. (2003). A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal, 18 (8) , 657–665.
Liou, F. M. (2008). Fraudulent financial reporting detection and business failure prediction models: a comparison. Managerial Auditing Journal, 23 (7) , 650–662.
Mazlumi, N. , Latifi, F. , & Aasaai, H. (2008). Risk Taking Behavior of CEO'S and Firm Performance (Companies Registered with Tehran Stock Exchange). Management Studies in Development and Evolution, 14 (56) , 71-92. [In Persian]
Mehrani, K. , & Hesarzadeh, R. (2008). A Review of theories and models of fraud detection. Accounting Knowledge and Research, winter (15) , 6-11. [In Persian]
Moslehshirazi, A. , Namazi, M. , Mohammadi, A. , & Rajabi, A. (2013). Prospect Theory and Modeling Managers Decision Making in the Industrial Sector. Journal of Industrial Management Perspective, (10) , Summer, 9-33. [In Persian]
Namazi, M. , & Ebrahimi, F. (2016). Modeling and Identifying Effective Factors Affecting the Intention of Reporting Financial Fraudulent by Accountant. Empirical Studies in Financial Accounting, 13 (49) , 1-28. [In Persian]
O’Connor, J. P, R. L. Priem, J. E. Coombs, & Gilley, K. M. (2006). Do CEO Stock Options Prevent or Promote Fraudulent Financial Reporting? Academy Of Management Journal, 49 (3) , 483–500.
Perols, J. (2011). Financial statement fraud detection: an analysis of statistical and machine learning algorithms. Auditing: A Journal of Practice and Theory 30 (2) , 19-50.
Pinello, A. S. (2008). Investors’ Differential Reaction to Positive versus Negative Earnings Surprises. Contemporary Accounting Research, 25 (3) , 891–920.
Pourheydari, O. , & Bazrafshan, S. (2012). An Examination of the Usefulness of fraud detection Decision Aid in Assessment of Management Fraud Risk. Journal of Empirical Researches in Accounting, 1 (3) , 67-84. [In Persian]
Purda, L. , & Skillicorn, D. (2015). Accounting Variables, Deception, and a Bag of Words: Assessing the Tools of Fraud Detection. Contemporary Accounting Research, 32 (3) , 1193–1223.
RahnamayRoodposhti, F. (2012). Data mining & Financial Fraud. Journal of Management Accounting and Auditing Knowledge, 1 (3) ,17-34. [In Persian]
Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers. IBM Journal of Research and Development, 3 (3) , 210 - 229.
Tackett, J. A. (2013). Association rules for fraud detection. Journal of Corporate Accounting and Finance, 24 (4) , 15–22.
Torugsa, N & Arundel, A. (2017). Rethinking the effect of risk aversion on the benefits of service innovations in public administration agencies. Research Policy, 46 (5) , 900-910.
Tversky, A, & Kahneman, D. (1992). Advances in Prospect Theory: Cumulative Representation of Uncertainty. Journal of Risk and Uncertainty, 5 (4) , 297–323.
Vahidi, E. , & Hamedian, H. (2009). Iranian auditors' perceptions of the effectiveness of risk signs in detecting fraudulent financial reporting. Accounting Researches, Fall (3) , 162-197. [In Persian]
Von Neumann, J, & Morgenstern, O. (1944). Theory of Games and Economic Behavior. Princeton: Princeton University Press.
Yeh, T. H. , Deng, S. ,. (2012). Application of machine learning methods to cost estimation of product life cycle. International Journal of Computer Integrated Manufacturing 25 (4) , 340–352.
ZareBahnamiri, M. , & Malekian, E. (2016). Ranking the Factors Affecting Financial Fraud Probability, According to Audited Financial Statements. Journal of Empirical Researches in Accounting, 6 (1) , 1-18. [In Persian]